

Universidad del Mar

Campus Puerto Escondido

Hidroquímica de las aguas de dos lagunas costeras en Oaxaca: impacto en la distribución de *Avicennia germinans* (Equisetopsida: Acanthaceae)

TESIS

Que para obtener el Título Profesional

de Ingeniero Forestal

Presenta

Jose Luis Salinas Reyes

Director

Dr. Héctor Manuel Ortega Escobar

Puerto Escondido, Oaxaca 2024

Hidroquímica de las aguas de dos lagunas costeras en Oaxaca: impacto en la distribución de *Avicennia germinans* (Equisetopsida: Acanthaceae)

Jose Luis Salinas-Reyes^{‡1}

¹Universidad del Mar, Campus Puerto Escondido

RESUMEN

Los manglares son una comunidad vegetal que se desarrolla en la intersección del medio acuático y terrestre, principalmente en zonas tropicales del mundo. Dada la especificidad de su hábitat, el desarrollo demofórico en la zona costera y sumado a variaciones climáticas recientes se ha impactado negativamente el ecosistema. Con el objeto de determinar el estado actual físico-químico de dos lagunas costeras que se encuentran en Oaxaca, este estudio analiza y discute el efecto de la composición química de las aguas y suelos circundantes que interaccionan con la población de Avicennia germinans (L.) L. Se estudiaron los problemas de acumulación de sales, mediante un muestreo detallado donde se colectaron 80 muestras de agua en las lagunas de estudio, así como 68 muestras que corresponden a los suelos donde crece el mangle. La caracterización físico-química se realizó mediante el análisis de pH, conductividad eléctrica (CE), contenido de: cationes Ca⁺², Mg⁺², Na⁺, K⁺; y aniones CO₃⁻², HCO₃⁻, Cl⁻ y SO₄⁻², RSE y RSC. La caracterización hidroquímica muestra la influencia marina, en lo que se refiere al cloruro de sodio (NaCl) además de otras sales como el cloruro de magnesio y el cloruro de calcio. Los procesos de acumulación de sales en los suelos y aguas son más intensos en la laguna la Salina en comparación con la laguna los Naranjos. La salinidad es un factor abiótico que influye en el desarrollo de A. germinans, en el límite inferior restringe su crecimiento y la capacidad de competencia frente a otras especies del manglar, mientras que, en condiciones fluctuantes de alta salinidad (70.0 – 80.0 g L⁻¹), que superan con mayor intensidad el umbral de tolerancia reportado para la especie, la población de A. germinans disminuirá drásticamente su desarrollo y permanencia.

Palabras clave: extracto de saturación, halófitas, manglar, sales hipotéticas.

Hydrochemistry of the waters of two coastal lagoons in Oaxaca: impact on the distribution of *Avicennia germinans* (Equisetopsida: Acanthaceae)

Jose Luis Salinas-Reyes^{‡1}

¹Universidad del Mar, Campus Puerto Escondido

ABSTRACT

Mangroves are a vegetation community that develops at the intersection of the aquatic and terrestrial environments, mainly in tropical areas of the world. Given the specificity of their habitat, the development of the coastal zone and recent climatic variations have negatively impacted the ecosystem. In order to determine the current physical-chemical status of two coastal lagoons located in Oaxaca, this study analyzes and discusses the effect of the chemical composition of the surrounding waters and soils that interact with the population of Avicennia germinans (L.) L. The problems of salt accumulation were studied through a detailed sampling where 80 water samples were collected in the study lagoons, as well as 68 samples corresponding to the soils where the mangrove grows. The physical-chemical characterization was carried out by analyzing pH, electrical conductivity (EC), content of: Ca⁺², Mg⁺², Na⁺, K⁺ cations; and CO₃⁻², HCO₃⁻, Cl⁻ and SO₄⁻² anions, RSE and RSC. The hydrochemical characterization shows the marine influence, in terms of sodium chloride (NaCl) in addition to other salts such as magnesium chloride and calcium chloride. Salt accumulation processes in the soil and water are more intense in the Salina lagoon compared to the Naranjos lagoon. Salinity is an abiotic factor that influences the development of A. germinans, at the lower limit it restricts its growth and the capacity to compete with other mangrove species, while in fluctuating conditions of high salinity (70.0 - 80.0 g L^{-1}), which exceed with greater intensity the tolerance threshold reported for the species, the population of A. germinans will drastically decrease its development and permanence.

Key Words: saturation extract, halophytes, mangrove, hypothetical salts.

ii

AGRADECIMIENTOS INSTITUCIONALES

A la Universidad del Mar, Campus Puerto Escondido.

Al Colegio de Posgraduados, Campus Montecillos, en particular al Posgrado en Hidrociencias, que me otorgó las facilidades de espacios y el equipo adecuado para el desarrollo de la presente investigación.

A la comunidad "Barra de Navidad" perteneciente al municipio de Santa María Colotepec y la comunidad "Escobilla" municipio de Santa María Tonameca por el interés en la presente investigación y permitir el acceso para realizar las actividades pertinentes.

AGRADECIMIENTOS ESPECIALES A:

El autor expresa su agradecimiento *in memoriam* al Dr. Edgar Iván Sánchez Bernal, investigador connotado, quien con su experiencia y visión estableció las bases de esta investigación, sirva la presente tesis para honrar su vida y sus enseñanzas.

A mi estimado director de tesis Dr. Héctor Manuel Ortega Escobar:

Sin usted, la mano afectuosa que tendió al pobre niño desamparado que era yo, sin su enseñanza y ejemplo, esta investigación no hubiera llegado a buen puerto, y le puedo asegurar que sus esfuerzos, su trabajo y el alma generosa que usted puso, continuarán siempre vivos en uno de sus pequeños estudiantes, que, sin importar el tiempo, no dejará de ser un alumno agradecido.

Jose Luis Salinas Reyes.

DEDICATORIA

La presente tesis está dedicada a mi hermana Shaori Aurora,

en cuya alma existe una fuerza inagotable,

y una belleza imperecedera.

Cuando la Humana vida a nuestros ojos Oprimida yacía con infamia En la tierra por grave fanatismo, 90 Que desde las mansiones celestiales Alzaba la cabeza amenazando A los mortales con horrible aspecto, Al punto un varón griego osó el primero Levantar hacia él mortales ojos 95 Y abiertamente declararle guerra: No intimidó a este hombre señalado La fama de los dioses, ni sus rayos, Ni del cielo el colérico murmullo. 100 El valor extremado de su alma Se irrita más y más con la codicia De romper el primero los recintos Y de Natura las ferradas puertas. La fuerza vigorosa de su ingenio Triunfa y se lanza más allá de los muros 105 Inflamados del mundo, y con su mente Corrió la inmensidad, pues victorioso Nos dice cuáles cosas nacer pueden, Cuáles no pueden, cómo cada cuerpo 110 Es limitado por su misma esencia: Por lo que el fanatismo envilecido A su voz es hallado con desprecio; ¡Nos iguala a los dioses la victoria!

Tito Lucrecio Caro. Siglo I A. C. De rerum natura

CONTENIDO

		Pág.
	RESUMEN	i
	ABSTRACT	ii
	ÍNDICE DE CUADROS	xiii
	ÍNDICE DE FIGURAS	xvii
I.	INTRODUCCIÓN	1
II.	OBJETIVOS E HIPÓTESIS	4
2. 1.	Objetivo general	4
2. 1. 1.	Objetivos particulares	4
2. 2.	Hipótesis	4
III.	REVISIÓN DE LITERATURA	5
3. 1.	Antecedentes	5
3. 2.	Las acumulaciones salinas en los suelos: sus orígenes y causas	6
3. 2. 1.	Ciclos continentales	7
3. 2. 2.	Ciclos marinos	7
3. 2. 3.	Ciclos deltaicos	8
3. 2. 4.	Ciclos artesianos	8
3. 2. 5.	Ciclos antropogénicos	8
3. 3.	Distribución global de los suelos afectados por salinidad	9
3. 4.	Suelos salinos en México	12
3. 5.	Características de los suelos salinos, salino-sódicos y sódicos	13
3. 6.	Sales solubles en suelos, aguas superficiales y aguas freáticas	14
3. 7.	Solubilidad de las sales	15
3. 8.	Composición química de aguas superficiales	15
3. 9.	Calidad Hidroquímica del agua	18

3. 10.	Métodos de clasificación geoquímica	19
3. 10. 1.	Mapas (Isolíneas) hidroquímicos	19
3. 10. 2.	Diagramas hidroquímicos	20
3. 10. 3.	Secciones hidroquímicas	22
3. 11.	Criterios que evalúan la calidad de las soluciones acuosas	22
3. 11. 1.	Criterio de Salinidad	22
3. 11. 1. 1.	Conductividad eléctrica (CE)	22
3. 11. 1. 2.	рН	23
3. 11. 1. 3.	Índice de salinidad efectiva (SE)	24
3. 11. 1. 4.	Índice de salinidad potencial (SP)	25
3. 11. 1. 5.	Presión osmótica (PO)	26
3. 11. 2.	Criterio de sodicidad	27
3. 11. 2. 1.	Relación entre el porciento de sodio intercambiable y la relación de	
	adsorción de sodio (PSI-RAS)	31
3. 11. 2. 2.	Relación de adsorción de sodio original (RAS _{or})	33
3. 11. 2. 3.	Relación de adsorción de sodio ajustado (RAS _{aj})	35
3. 11. 2. 4.	Relación de adsorción de sodio corregido (RAS°)	36
3. 12.	Suelos salinos y su efecto en la vegetación	38
3. 12. 1.	Sequía fisiológica	39
3. 12. 2.	Deficiencia nutricional	40
3. 12. 3.	Toxicidad de iones específicos	41
3. 12. 4.	Antagonismo iónico	41
3. 13.	La zona costera	42
3. 13. 1.	Lagos formados por la actividad costera	43
3. 14.	Lagunas costeras en México	44
3. 14. 1.	Origen	45

3. 14. 2.	Procesos físicos que influyen en la hidrodinámica del sistema	46
3. 15.	Vegetación halófita	47
3. 15. 1.	Clasificación	52
3. 15. 2.	Crecimiento	53
3. 16.	Los manglares	54
3. 16. 1.	Importancia ecológica y económica	54
3. 16. 2.	Adaptaciones	57
3. 16. 3.	Sales y relaciones osmóticas	59
3. 16. 4.	Fitogeografía	60
3. 16. 4. 1.	Manglares de México	62
3. 17.	Avicennia germinans (L.) L. Stearn	66
3. 17. 1.	Descripción botánica	67
IV.	MATERIALES Y MÉTODOS	68
4. 1.	Área de estudio	68
4. 1. 1.	Oaxaca	68
4. 1. 2.	Fisiografía	68
4. 1. 3.	Clima	70
		70
4. 1. 4.	Hidrología	70
4. 1. 4. 4. 1. 5.	Hidrología Litología	70 70 72
4. 1. 4. 4. 1. 5. 4. 1. 6.	Hidrología Litología Edafología	70 70 72 72
 4. 1. 4. 4. 1. 5. 4. 1. 6. 4. 1. 7. 	Hidrología Litología Edafología Uso de suelo y vegetación	70 70 72 72 73
 4. 1. 4. 4. 1. 5. 4. 1. 6. 4. 1. 7. 4. 2. 	Hidrología Litología Edafología Uso de suelo y vegetación Ubicación de los sitios de muestreo	70 70 72 72 73 81
 4. 1. 4. 4. 1. 5. 4. 1. 6. 4. 1. 7. 4. 2. 4. 3. 	Hidrología Litología Edafología Uso de suelo y vegetación Ubicación de los sitios de muestreo Determinaciones físico-químicas	70 70 72 72 73 81 83
 4. 1. 4. 4. 1. 5. 4. 1. 6. 4. 1. 7. 4. 2. 4. 3. 4. 3. 1. 	Hidrología Litología Edafología Uso de suelo y vegetación Ubicación de los sitios de muestreo Determinaciones físico-químicas Análisis químico de suelos y aguas	70 70 72 72 73 81 83 83
 4. 1. 4. 4. 1. 5. 4. 1. 6. 4. 1. 7. 4. 2. 4. 3. 4. 3. 1. 4. 4. 	Hidrología Litología Edafología Uso de suelo y vegetación Ubicación de los sitios de muestreo Determinaciones físico-químicas Análisis químico de suelos y aguas	70 70 72 72 73 81 83 83 83

4.4.2.	Regresión lineal	85
4. 5.	Interpolación	86
4. 5. 1.	Kriging	88
4. 6.	Verificación de la exactitud de los análisis químicos	89
4. 6. 1.	Equilibrio entre cationes y aniones	89
4. 6. 2.	Sólidos totales disueltos medidos = Sólidos totales disueltos calculados	90
4. 6. 3.	Conductividad eléctrica experimental = Conductividad eléctrica calculada	90
4. 6. 4.	Conductividad eléctrica experimental y la suma de iones	91
4. 6. 5.	Solidos totales disueltos medidos en mg L ⁻¹ y la Conductividad eléctrica	91
4. 7.	Determinación estructural de la población de Avicennia germinans (L.) L.	91
4. 7. 1.	Medición de variables estructurales	92
V.	RESULTADOS Y DISCUSIÓN GENERAL	94
5. 1.	Localización geográfica del área de estudio	94
5. 1. 1.	Laguna los Naranjos	94
5. 1. 2.	Laguna la Salina	97
5. 2.	Características físicas y condición de las lagunas los Naranjos y la Salina	100
5. 3.	Caracterización física de los suelos	106
5. 3. 1.	Textura	108
5. 3. 2.	Estructura	110
5. 3. 3.	Color	111
5. 3. 4.	Materia orgánica	116
5. 4.	Comprobación de la exactitud de los análisis químicos	119
5. 4. 1.	Equilibrio entre cationes y aniones	119
5. 4. 1. 1.	Concentración de cationes y aniones	120
5. 4. 2.	Relación de Sólidos totales disueltos medidos (STD _{med}) y Sólidos totales	
	disueltos calculados (STD _{calc})	122

5.4.3.	Conductividad eléctrica medida = Conductividad eléctrica calculada	123
5. 4. 4.	Conductividad eléctrica experimental y la suma de iones	124
5. 4. 5.	Solidos totales disueltos (STD) en mg L ⁻¹ y la Conductividad eléctrica	126
5. 5.	Composición iónica de las soluciones	129
5. 5. 1.	Composición iónica de las aguas leníticas de la laguna los Naranjos y la	
	laguna la Salina	130
5. 5. 2.	Composición iónica de las soluciones extraídas en relación suelo-agua 1:sat	
	y 1:5	132
5. 5. 2. 1.	Suelos de la laguna los Naranjos	133
5. 5. 2. 2.	Suelos de la laguna la Salina	136
5. 5. 2. 3.	Composición química de las soluciones en 100 g de suelo y su relación	
	funcional 1:sat y 1:5	139
5. 6.	Clasificación de las soluciones con base en la salinidad	142
5. 6. 1.	Conductividad eléctrica (CE) de las aguas leníticas de la laguna los Naranjos	
	y la laguna la Salina	142
5. 6. 2.	Relación entre los valores de conductividad eléctrica de los suelos a partir	
	del extracto de pasta saturada y en la relación suelo-agua 1:5	146
5. 6. 3.	Índice de salinidad efectiva e índice de salinidad potencial	152
5. 6. 3. 1.	Salinidad efectiva y salinidad potencial en aguas leníticas de la laguna los	
	Naranjos y la Salina	153
5. 6. 3. 2.	Salinidad efectiva y salinidad potencial de las soluciones extraídas en	
	relación suelo-agua 1:sat y 1:5, suelos de la laguna los Naranjos	158
5. 6. 3. 3.	Salinidad efectiva y salinidad potencial de las soluciones extraídas en	
	relación suelo-agua 1:sat y 1:5, suelos de la laguna la Salina	161
5. 6. 3. 4.	Relación entre los índices de salinidad determinados en soluciones	
	extraídas en pasta de saturación y relación suelo-agua 1:5	165

х

5. 6. 4.	Presión osmótica	166
5. 6. 4. 1.	Presión osmótica en las aguas leníticas de la laguna los Naranjos y	
	la Salina	168
5. 6. 4. 2.	Presión osmótica de las soluciones extraídas en relación suelo-agua 1:sat y	
	1:5, suelos de la laguna los Naranjos	170
5. 6. 4. 3.	Presión osmótica de las soluciones extraídas en relación suelo-agua 1:sat y	
	1:5, suelos de la laguna la Salina	171
5. 6. 4. 4.	Relación entre el potencial osmótico determinado en soluciones extraídas	
	en pasta de saturación y relación suelo-agua 1:5	173
5. 7.	Clasificación de las soluciones con base en la sodicidad	175
5. 7. 1.	Porciento de sodio intercambiable – relación de adsorción de sodio	
	(PSI-RAS)	175
5. 7. 1. 1.	Relación PSI-RAS en las aguas leníticas de la laguna los Naranjos y la	
	laguna la Salina	178
5. 7. 1. 2.	Relación PSI-RAS en las soluciones extraídas en relación suelo-agua 1:sat	
	y 1:5, suelos de la laguna los Naranjos	179
5. 7. 1. 3.	Relación PSI-RAS en las soluciones extraídas en relación suelo-agua 1:sat	
	y 1:5, suelos de la laguna la Salina	180
5. 7. 2.	Valores de adsorción de sodio en sus distintas formulaciones: RAS_{or} , RAS_{aj}	
	y RAS° en las aguas leníticas de la laguna los Naranjos y la laguna	
	la Salina	182
5. 7. 3.	Valores de RAS en sus distintas formulaciones en soluciones extraídas en	
	relación suelo-agua 1:sat y 1:5	187
5. 7. 3. 1.	Suelos de la laguna los Naranjos	187
5. 7. 3. 2.	Suelos de la laguna la Salina	195
5. 8.	Cálculo de las sales hipotéticas	202

xi

5. 8. 1.	Formación hipotética de sales en las aguas leníticas de la laguna los	
	Naranjos y la laguna la Salina	204
5. 8. 2.	Formación hipotética de sales en las soluciones extraídas en 1:sat y 1:5 de	
	los suelos de la laguna los Naranjos	210
5. 8. 3.	Formación hipotética de sales en las soluciones extraídas en 1:sat y 1:5 de	
	los suelos de la laguna la Salina	215
5. 8. 4.	Relación entre las sales hipotéticas determinadas en relación 1:sat y la	
	relación suelo-agua 1:5	220
5. 9.	Fuerza iónica (I) de iones	221
5. 9. 1.	Fuerza iónica de iones de las aguas leníticas de la laguna los Naranjos y de	
	la laguna la Salina	221
5. 9. 2.	Fuerza iónica de iones en los extractos de saturación 1:sat y 1:5 en la laguna	
	los Naranjos	224
5. 9. 3.	Fuerza iónica de iones en los extractos de saturación 1:sat y 1:5 en la laguna	
	la Salina	225
5. 10.	Fuerza iónica de sales hipotéticas	227
5. 11.	Comparación fuerza iónica de sales hipotéticas y fuerza iónica de iones	231
5. 12.	Caracterización hidroquímica de las soluciones	233
5. 12. 1.	Diagrama de Piper	234
5. 12. 2.	Diagrama de Durov	239
5. 13.	Variación espacial de la salinidad del suelo	243
5. 14.	Estructura y patrón espacial de Avicennia germinans (L.) L.	252
VI.	CONCLUSIONES	262
VII.	RECOMENDACIONES	266
VIII.	LITERATURA CITADA	267
IX.	ANEXOS	299

ÍNDICE DE CUADROS

		Pág.
Cuadro 1.	Estimaciones globales de las zonas afectadas por sales.	10
Cuadro 2.	Composición de la corteza terrestre.	14
Cuadro 3.	Solubilidad máxima en agua de algunas sales a diferentes temperaturas	
	(solución saturada).	15
Cuadro 4.	Composición química promedio del agua de los ríos de acuerdo con el tipo de	
	roca o suelo.	16
Cuadro 5.	Composición media del agua en los lagos del mundo.	18
Cuadro 6.	Diagramas hidroquímicos.	21
Cuadro 7.	Clasificación de las aguas de riego, de acuerdo con su salinidad efectiva.	25
Cuadro 8.	Clasificación de las aguas según su salinidad potencial.	26
Cuadro 9.	Clasificación de la calidad del agua para riego de acuerdo con la sodicidad.	29
Cuadro 10.	Concentración de calcio (Caº) en el agua del suelo contenido en el suelo cerca	
	de la superficie, que resultaría de regar con agua de determinado valor de	
	HCO ₃ ⁻ /Ca ⁺² y conductividad del agua de riego (CE) ^{a,b} .	37
Cuadro 11.	Mecanismos de control de las halófitas para adaptarse a ambientes salinos.	49
Cuadro 12.	Resistencia salina de las plantas.	50
Cuadro 13.	Países con mayor superficie de manglar a nivel mundial.	62
Cuadro 14.	Metodología para el análisis químico de los extractos de los suelos y aguas	
	leníticas de las lagunas los Naranjos y la Salina.	84
Cuadro 15.	Criterios de aceptación de análisis químicos en relación con el balance de	
	cationes y aniones.	89
Cuadro 16.	Factores de conversión para obtener la conductividad eléctrica teórica.	90
Cuadro 17.	Localización geográfica de los puntos de muestreo dentro del espejo de agua	
	de la laguna los Naranjos.	94

Cuadro 18.	Localización geográfica de los sitios de muestreo de suelos en los terrenos de	
	manglar de la laguna los Naranjos.	95
Cuadro 19.	Localización geográfica de los puntos de muestreo dentro del espejo de agua	
	en la laguna la Salina.	97
Cuadro 20.	Localización geográfica de los sitios de muestreo de suelos en los terrenos de	
	manglar de la laguna la Salina.	98
Cuadro 21.	Determinación del color del suelo para los perfiles en la laguna los Naranjos	
	utilizando el sistema de notación Munsell (2000).	113
Cuadro 22.	Determinación del color del suelo para los perfiles en la laguna la Salina	
	utilizando el sistema de notación Munsell (2000).	115
Cuadro 23.	Estimación del contenido de materia orgánica basado en el color del suelo de	
	la tabla Munsell y la clase textural.	118
Cuadro 24.	% Error calculado para las soluciones analizadas de acuerdo con la	
	metodología indicada por APHA (1998).	120
Cuadro 25.	Tipos de salinidad de soluciones acuosas.	129
Cuadro 26.	Clasificación de las aguas leníticas de la laguna los Naranjos y la laguna la	
	Salina, con base al riesgo de salinidad.	143
Cuadro 27.	Algunas características físico-químicas en los principales sistemas lagunares	
	en la costa de Oaxaca.	146
Cuadro 28.	Relaciones que han sido reportadas entre CE1:sat y la CE de los extractos	
	suelo-agua 1:5.	149
Cuadro 29.	Valores de CE medida en los suelos objeto de estudio, en pasta saturada	
	(CE _e) y relación suelo-agua 1:5 (CE _{1:5}).	150
Cuadro 30.	Ecuaciones de regresión que describen la relación entre la conductividad	
	eléctrica del extracto de pasta saturada (CE _{1:sat}) y la relación suelo-agua 1:5	
	(CE _{1:5}) de los suelos de la laguna los Naranjos y la Salina.	151

Cuadro 31. Clasificación de las aguas leníticas de la laguna los Naranjos, de acuerdo con su salinidad efectiva y salinidad potencial. 156 Cuadro 32. Clasificación de las aguas leníticas de la laguna los Salina, de acuerdo con 157 su salinidad efectiva y salinidad potencial. Cuadro 33. Clasificación de las soluciones extraídas en pasta de saturación, de acuerdo con su salinidad efectiva y salinidad potencial, suelos de la laguna los 159 Naranjos. Cuadro 34. Clasificación de las soluciones extraídas en relación suelo-agua 1:5, de acuerdo con su salinidad efectiva y salinidad potencial, suelos de la laguna los Naranjos. 160 Cuadro 35. Clasificación de las soluciones extraídas en pasta de saturación, de acuerdo con su salinidad efectiva y salinidad potencial, suelos de la laguna la Salina. 163 Cuadro 36. Clasificación de las soluciones extraídas en relación suelo-agua 1:5, de acuerdo con su salinidad efectiva y salinidad potencial, suelos de la laguna la Salina. 164 Cuadro 37. Lineamientos generales para el manejo de las aguas de riego. 183 Cuadro 38. Valores de las distintas formulaciones de la relación de adsorción de sodio 185 (RAS), de las aguas leníticas de la laguna los Naranjos. Cuadro 39. Valores de las distintas formulaciones de la relación de adsorción de sodio (RAS), de las aguas leníticas de la laguna la Salina. 186 Cuadro 40. Valores de las distintas formulaciones de la relación de adsorción de sodio. soluciones extraídas en 1:sat, suelos de la laguna los Naranjos. 188 Cuadro 41. Valores de las distintas formulaciones de la relación de adsorción de sodio, soluciones extraídas en relación 1:5, suelos de la laguna los Naranjos. 190 Cuadro 42. Clasificación de las soluciones extraídas de los suelos en relación 1:sat y 1:5 de los suelos de la laguna los Naranjos. 192

Cuadro 43.	Clasificación de las soluciones extraídas de los suelos en relación 1:sat y 1:5	
	de los suelos de la laguna la Salina.	196
Cuadro 44.	Valores de las distintas formulaciones de la relación de adsorción de sodio,	
	soluciones extraídas en 1:sat, suelos de la laguna la Salina.	198
Cuadro 45.	Valores de las distintas formulaciones de la relación de adsorción de sodio,	
	soluciones extraídas en relación 1:5, suelos de la laguna la Salina.	200
Cuadro 46.	Sales hipotéticas de las aguas leníticas de la laguna los Naranjos.	208
Cuadro 47.	Sales hipotéticas de las aguas leníticas de la laguna la Salina.	209
Cuadro 48.	Sales hipotéticas de las soluciones extraídas en 1:sat, suelos de la laguna los	
	Naranjos.	211
Cuadro 49.	Sales hipotéticas de las soluciones extraídas en relación suelo-agua 1:5,	
	suelos de la laguna los Naranjos.	213
Cuadro 50.	Sales hipotéticas de las soluciones extraídas en 1:sat, suelos de la laguna la	
	Salina.	216
Cuadro 51.	Sales hipotéticas de las soluciones extraídas en relación suelo-agua 1:5,	
	suelos de la laguna la Salina.	218
Cuadro 52.	Valores de s _k para sales de diferentes tipos de valencia.	228
Cuadro 53.	Clasificación hidroquímica de las aguas leníticas y soluciones extraídas de los	
	suelos de la laguna los Naranjos y la laguna la Salina.	238
Cuadro 54.	Características dasométricas (\bar{x}) de los árboles de mangle negro en función	
	de la conductividad eléctrica de los suelos de la laguna los Naranjos.	254
Cuadro 55.	Características dasométricas (\bar{x}) de los árboles de mangle negro en función	
	de la conductividad eléctrica de los suelos de la laguna la Salina.	257

ÍNDICE DE FIGURAS

		Pág.
Figura 1.	Suelos mundiales afectados por las sales, por tipo y gravedad.	9
Figura 2.	Distribución global de los litorales y valles de los ríos afectados por salinidad.	11
Figura 3.	Suelos salinos y tipos de degradación química en México.	12
Figura 4.	Isolíneas de STD, SO ₄ - ² y HCO ₃ ^{-/} Cl ⁻ en el acuífero de piedra caliza paleozoica	
	de la cuenca de Georgina, territorio del Norte de Australia.	20
Figura 5.	Sección hidroquímica de la roca caliza de Milolita a través de la costa de	
	Saurashtra, India.	22
Figura 6.	Diagrama para la clasificación de aguas de riego.	30
Figura 7.	Etapas esquemáticas de la evolución de una costa de sumersión.	43
Figura 8.	Esquema de la morfología típica de una a) laguna costera y b) un estuario.	45
Figura 9.	Fenómenos geológicos que dieron origen a las lagunas costeras.	46
Figura 10.	Clasificación esquemática de los tipos de halófitas según la estrategia de	
	regulación de la concentración interna de sales.	51
Figura 11.	Adaptación osmótica en halófitas y no halófitas.	52
Figura 12.	Crecimiento de varios tipos de plantas bajo estrés salino.	53
Figura 13.	Servicios ecosistémicos y amenazas del manglar.	57
Figura 14.	Distribución global de los manglares (rojo y verde) en ambas regiones (Indo-	
	Oeste del pacífico y Atlántico-Este del Pacífico) y la distribución actual de	
	Avicennia germinans (L.) L. (verde).	61
Figura 15.	Especies de manglar más representativas en México.	64
Figura 16.	Especies de manglar registradas únicamente para México (Península de	
	Yucatán, Oaxaca y Chiapas).	65

Figura 17.	Avicennia germinans (L.) L. a: individuo maduro. b: características de la flor.	
	c: forma de las hojas y su arreglo en una rama; arreglo de las flores. d: forma	
	del fruto. e: patrón de la corteza. f: forma de los neumatóforos.	67
Figura 18.	Fisiografía del estado de Oaxaca.	69
Figura 19.	Distribución de los climas predominantes en el estado de Oaxaca.	70
Figura 20.	Cobertura del tipo de vegetación con respecto al área total de la cuenca en	
	km ² .	73
Figura 21.	Fisiografía del estado de Oaxaca de Juárez.	74
Figura 22.	Sistema de topoformas del estado de Oaxaca de Juárez.	75
Figura 23.	Climas predominantes del estado de Oaxaca.	76
Figura 24.	Regiones, cuencas y subcuencas hidrológicas del estado de Oaxaca de	
	Juárez.	77
Figura 25.	Litología de las cuencas a las que pertenecen las lagunas de estudio; R.	
	Colotepec y R. Cozoaltepec.	78
Figura 26.	Edafología de las cuencas a las que pertenecen las lagunas de estudio; R.	
	Colotepec y R. Cozoaltepec.	79
Figura 27.	Vegetación y uso de suelo de las cuencas a las que pertenecen las lagunas	
	de estudio; R. Colotepec y R. Cozoaltepec.	80
Figura 28.	Diagrama del método punto cuadrante central.	82
Figura 29.	Metodología para determinar el mejor método de interpolación.	87
Figura 30.	Representación gráfica de los principales métodos de interpolación.	88
Figura 31.	Diagrama general de las variables dasométricas medidas en los individuos de	
	mangle negro.	92
Figura 32.	Localización geográfica de los sitios de muestreo, en las aguas leníticas y	
	terrenos de manglar de la laguna los Naranjos.	96

Figura 33.	Localización geográfica de los sitios de muestreo, en los terrenos de manglar	
	y aguas leníticas de la laguna la Salina.	99
Figura 34.	Variación de las características físicas de la laguna los Naranjos en años	
	recientes.	101
Figura 35.	Variación de las características físicas de la laguna la Salina en años	
	recientes.	102
Figura 36.	Tipos de génesis y forma de lagos costeros.	103
Figura 37.	Suspensión y sedimentos en lagunas costeras.	104
Figura 38.	Lagunas salinas e hipersalinas.	104
Figura 39.	Características morfométricas de las lagunas costeras objetos de estudio.	105
Figura 40.	Variables ambientales registradas en la estación climatológica a) la Ceiba y	
	b) Cozoaltepec.	106
Figura 41.	Horizontes identificados en el análisis de campo vertical descendiente de los	
	perfiles de suelo.	108
Figura 42.	Relación de los constituyentes de la tierra fina de los suelos en la laguna los	
	Naranjos definiendo las clases texturales.	109
Figura 43.	Relación de los constituyentes de la tierra fina de los suelos en la laguna la	
	Salina definiendo las clases texturales.	110
Figura 44.	Relación entre la suma de aniones y la suma de cationes en las soluciones	
	pertenecientes a la laguna los Naranjos.	121
Figura 45.	Relación entre la suma de aniones y la suma de cationes en las soluciones	
	pertenecientes a la laguna la Salina.	121
Figura 46.	Relación de los solidos totales disueltos medidos (STD _{med}) y calculados	
	(STD _{calc}) en las soluciones pertenecientes a la laguna los Naranjos.	122
Figura 47.	Relación de los solidos totales disueltos medidos (STD _{med}) y calculados	
	(STD _{calc}) en las soluciones pertenecientes a la laguna la Salina.	123

xix

- Figura 48.Relación entre la conductividad eléctrica medida (CEmed) y calculada (CEcalc)en las soluciones pertenecientes a la laguna los Naranjos.124
- Figura 49.Relación entre la conductividad eléctrica medida (CEmed) y calculada (CEcalc)en las soluciones pertenecientes a la laguna la Salina.124

Figura 50. Relación entre la suma de cationes (100 * Σ cationes) y la conductividad eléctrica medida (CE_{med}) en las soluciones pertenecientes a la laguna los Naranjos. 125

- Figura 51. Relación entre la suma de cationes (100 * Σ cationes) y la conductividad eléctrica medida (CE_{med}) en las soluciones pertenecientes a la laguna la Salina. 125
- Figura 52. Relación entre la suma de aniones (100 * Σ aniones) y la conductividad eléctrica medida (CE_{med}) en las soluciones pertenecientes a la laguna los Naranjos.
- Figura 53. Relación entre la suma de aniones (100 * Σ aniones) y la conductividad eléctrica medida (CE_{med}) en las soluciones pertenecientes a la laguna la Salina.
- Figura 54. Relación entre los solidos totales disueltos calculados (STD_{calc}) y la conductividad eléctrica medida (CE_{med}) en las soluciones pertenecientes a la laguna los Naranjos.
- Figura 55. Relación entre los solidos totales disueltos calculados (STD_{calc}) y la conductividad eléctrica medida (CE_{med}) en las soluciones pertenecientes a la laguna la Salina.
- Figura 56. Relación entre los solidos totales disueltos medidos (STD_{med}) y la conductividad eléctrica medida (CE_{med}) en las soluciones pertenecientes a la laguna los Naranjos.

хх

Figura 57.	Relación entre los solidos totales disueltos medidos (STD _{med}) y la	
	conductividad eléctrica medida (CE_{med}) en las soluciones pertenecientes a la	
	laguna la Salina.	128
Figura 58.	Relación entre la concentración iónica de las soluciones extraídas en pasta	
	de saturación (1:sat) y la relación suelo-agua 1:5 de los suelos de la laguna	
	los Naranjos.	134
Figura 59.	Patrones de distribución de sales solubles en los perfiles litológicos 0-60.0 cm;	
	a) Perfil 3, b) Perfil 4 y c) Perfil 5. Extractos de saturación de los suelos de la	
	laguna los Naranjos.	135
Figura 60.	Relación entre la concentración iónica de las soluciones extraídas en pasta	
	de saturación (1:sat) y la relación suelo-agua 1:5 de los suelos de la laguna	
	la Salina.	137
Figura 61.	Patrones de distribución de sales solubles en los perfiles litológicos 0-60.0 cm;	
	a) Perfil 3, b) Perfil 4 y c) Perfil 6. Extractos de saturación de los suelos de la	
	laguna la Salina.	138
Figura 62.	Relación entre el % sales 100g ⁻¹ del extracto en relación suelo-agua 1:5 y el	
	% sales 100g ⁻¹ del extracto de saturación (1:sat). Suelos de la laguna los	
	Naranjos (a) y la laguna la Salina (b).	141
Figura 63.	Relación entre los mmol _c $100g^{-1}$ del extracto en relación suelo-agua 1:5 y el	
	% sales 100g ⁻¹ del extracto de saturación (1:sat). Suelos de la laguna los	
	Naranjos (a) y la laguna la Salina (b).	141
Figura 64.	Principales sistemas lagunares en la costa de Oaxaca.	145
Figura 65.	Relación entre la CE en el extracto de saturación (CE _{1:sat}) y la CE del extracto	
	en relación suelo-agua 1:5 ($CE_{1:5}$), de los suelos de la laguna los Naranjos (a)	
	y la laguna la Salina (b).	152

xxi

Figura 66. Diagrama de clasificación de las aguas leníticas de la laguna los Naranjos y la Salina, con respecto al índice de salinidad potencial y al índice de salinidad efectiva. 155 Figura 67. Diagrama de clasificación de los extractos de saturación 1:sat y 1:5, con respecto al índice de salinidad potencial y al índice de salinidad efectiva, 161 suelos de la laguna los Naranjos. Figura 68. Diagrama de clasificación de los extractos de saturación 1:sat y 1:5, con respecto al índice de salinidad potencial y al índice de salinidad efectiva, 162 suelos de la laguna la Salina. Figura 69. Relación entre la salinidad efectiva (a) y la salinidad potencial (b) en soluciones extraídas en pasta de saturación (1:sat) y en relación suelo-agua 1:5, suelos de la laguna los Naranjos. 165 Figura 70. Relación entre la salinidad efectiva (a) y la salinidad potencial (b) en soluciones extraídas en pasta de saturación (1:sat) y en relación suelo-agua 1:5, suelos de la laguna la Salina. 166 Figura 71. Relación entre la presión osmótica (PO) y la conductividad eléctrica (CE) de las aguas leníticas de la laguna a) los Naranjos y b) la Salina. 169 Figura 72. Relación entre la presión osmótica (PO) teórica y PO experimental de las 169 aguas leníticas de la laguna a) los Naranjos y b) la Salina. Figura 73. Relación entre la presión osmótica (PO) y la conductividad eléctrica (CE) de las soluciones extraídas en a) pasta de saturación y b) relación suelo-agua 1:5, suelos de la laguna los Naranjos. 170 Figura 74. Relación entre la presión osmótica (PO) teórica y PO experimental de las soluciones extraídas en: a) pasta de saturación y b) relación suelo-agua 1:5, suelos de la laguna los Naranjos. 171

xxii

Figura 75.	Relación entre la presión osmótica (PO) y la conductividad eléctrica (CE) de	
	las soluciones extraídas en a) pasta de saturación y b) relación suelo-agua	
	1:5, suelos de la laguna la Salina.	172
Figura 76.	Relación entre la presión osmótica (PO) teórica y PO experimental de las	
	soluciones extraídas en: a) pasta de saturación y b) relación suelo-agua 1:5,	
	suelos de la laguna la Salina.	173
Figura 77.	Relación entre la presión osmótica (PO) en 1:sat y en relación suelo-agua 1:5.	
	a) PO _{teórico} , b) PO _{experimental} , suelos de la laguna los Naranjos.	174
Figura 78.	Relación entre la presión osmótica (PO) en 1:sat y en relación suelo-agua 1:5.	
	a) PO _{teórico} , b) PO _{experimental} , suelos de la laguna la Salina.	175
Figura 79.	Relación PSI-RAS para las expresiones: a) PSI-RAS $_{or}$, b) PSI-RAS $_{aj}$ y c) PSI-	
	RASº de las aguas leníticas de la laguna los Naranjos.	178
Figura 80.	Relación PSI-RAS para las expresiones: a) PSI-RAS $_{\rm or}$, b) PSI-RAS $_{\rm aj}$ y c) PSI-	
	RASº de las aguas leníticas de la laguna la Salina.	179
Figura 81.	Relación PSI-RAS para las expresiones: a) PSI-RAS $_{or}$, b) PSI-RAS $_{aj}$ y c) PSI-	
	RASº de las soluciones extraídas en 1:sat, suelos de la laguna los Naranjos.	180
Figura 82.	Relación PSI-RAS para las expresiones: a) PSI-RAS $_{or}$, b) PSI-RAS $_{aj}$ y c) PSI-	
	RASº de las soluciones extraídas en 1:5, suelos de la laguna los Naranjos.	180
Figura 83.	Relación PSI-RAS para las expresiones: a) PSI-RAS $_{or}$, b) PSI-RAS $_{aj}$ y c) PSI-	
	RASº de las soluciones extraídas en 1:sat, suelos de la laguna la Salina.	181
Figura 84.	Relación PSI-RAS para las expresiones: a) PSI-RAS $_{or}$, b) PSI-RAS $_{aj}$ y c) PSI-	
	RASº de las soluciones extraídas en 1:5, suelos de la laguna la Salina.	181
Figura 85.	Diagrama de clasificación de Richards de las aguas leníticas y soluciones de	
	los suelos de la laguna los Naranjos.	194

Figura 86.	Relación entre los valores de RAS _{1:5} y RAS _{1:sat} en sus diferentes	
	conceptualizaciones a) RAS_{or} , b) RAS_{aj} y c) RAS^{o} . Suelos de la laguna los	
	Naranjos.	195
Figura 87.	Relación entre los valores de RAS _{1:5} y RAS _{1:sat} en sus diferentes	
	conceptualizaciones, a) RAS_{or} , b) RAS_{aj} y c) RAS^{o} . Suelos de la laguna la	
	Salina.	197
Figura 88. D	Diagrama de clasificación de Richards de las soluciones extraídas en relación	
	suelo-agua 1:5 de los suelos de la laguna la Salina.	202
Figura 89. C	Orden de cálculo para la formación hipotética de las sales en soluciones con	
	alta salinidad e influencia marina.	203
Figura 90.	Proceso de cálculo de sales hipotéticas con presencia de carbonatos, muestra	
	#2, aguas leníticas de la laguna los Naranjos.	205
Figura 91.	Proceso de cálculo de sales hipotéticas con ausencia de carbonatos, muestra	
	#2, aguas leníticas de la laguna la Salina.	206
Figura 92.	Relación entre las sales hipotéticas determinadas en pasta de saturación	
	(1:sat) y la relación suelo-agua 1:5 de los suelos de la laguna los Naranjos (a)	
	y la laguna la Salina (b).	220
Figura 93.	Relación de la fuerza iónica estequiométrica (I) y la conductividad eléctrica	
	(CE) de las aguas leníticas de la laguna: a) los Naranjos y b) la Salina.	222
Figura 94.	Relación entre la fuerza iónica (I) (Bower et al., 1965) y la conductividad	
	eléctrica (CE) de las aguas leníticas de la laguna a) los Naranjos y	
	b) la Salina.	223
Figura 95.	Relación de la fuerza iónica estequiométrica (I) y la conductividad eléctrica	
	(CE) de las soluciones extraídas en a) pasta de saturación y b) relación suelo-	
	agua 1:5, suelos de la laguna los Naranjos.	224

xxiv

- Figura 96. Relación entre la fuerza iónica (I) (Bower *et al.*, 1965) y la conductividad eléctrica (CE) de las soluciones extraídas en a) pasta de saturación y b) relación suelo-agua 1:5, suelos de la laguna los Naranjos.
 225
- Figura 97. Relación de la fuerza iónica estequiométrica (I) y la conductividad eléctrica (CE) de las soluciones extraídas en a) pasta de saturación y b) relación suelo-agua 1:5, suelos de la laguna la Salina.
- Figura 98. Relación entre la fuerza iónica (I) (Bower *et al.*, 1965) y la conductividad eléctrica (CE) de las soluciones extraídas en a) pasta de saturación y b) relación suelo-agua 1:5, suelos de la laguna la Salina.
- Figura 99. Relación entre la fuerza iónica (I) estequiométrica y la propuesta por Bower et al. (1965), y la conductividad eléctrica (CE), de las soluciones extraídas en a) pasta de saturación y b) relación suelo-agua 1:5, suelos de la laguna la Salina.
- Figura 100. Relación fuerza iónica (I) de sales hipotéticas (M L⁻¹) y la conductividad eléctrica (CE) de las aguas leníticas de la laguna los Naranjos (a) y la laguna la Salina (b).
- Figura 101. Relación fuerza iónica (I) de sales hipotéticas (M L⁻¹) y la conductividad eléctrica (CE) de las soluciones extraídas en a) pasta de saturada y b) relación suelo-agua 1:5 de los suelos de la laguna los Naranjos.
 230
- Figura 102. Relación fuerza iónica (I) de sales hipotéticas (M L⁻¹) y la conductividad eléctrica (CE) de las soluciones extraídas en a) pasta de saturada y b) relación suelo-agua 1:5 de los suelos de la laguna la Salina.
 230
- Figura 103. Comparación de la fuerza iónica (I) de sales hipotéticas con respecto a la fuerza iónica de iones de las aguas leníticas de la laguna los Naranjos (a) y la laguna la Salina (b).
 232

Figura 104.	Comparación de la fuerza iónica (I) de sales hipotéticas con respecto a la	
	fuerza iónica de iones de las soluciones extraídas en a) pasta de saturada y	
	b) relación suelo-agua 1:5 de los suelos de la laguna los Naranjos.	232
Figura 105.	Comparación de la fuerza iónica (I) de sales hipotéticas con respecto a la	
	fuerza iónica de iones de las soluciones extraídas en a) pasta de saturada y	
	b) relación suelo-agua 1:5 de los suelos de la laguna la Salina.	233
Figura 106.	Facies hidroquímicas de las aguas leníticas de la laguna los Naranjos y la	
	Salina en el diagrama trilineal de Piper (1944).	235
Figura 107.	Facies hidroquímicas de las soluciones extraídas en 1:sat de los suelos de la	
	laguna los Naranjos y la Salina en el diagrama trilineal de Piper (1944).	236
Figura 108.	Facies hidroquímicas de las soluciones extraídas en relación suelo-agua 1:5	
	de los suelos de la laguna los Naranjos y la Salina en el diagrama trilineal de	
	Piper (1944).	237
Figura 109.	Diagrama hidroquímico de Durov (1948) de las aguas leníticas de la laguna	
	los Naranjos y la laguna la Salina.	240
Figura 110.	Facies hidroquímicas de las soluciones extraídas en 1:sat de los suelos de la	
	laguna los Naranjos y la Salina en el diagrama hidroquímico modificado de	
	Durov (1948).	241
Figura 111.	Facies hidroquímicas de las soluciones extraídas en relación suelo-agua 1:5	
	de los suelos de la laguna los Naranjos y la Salina en el diagrama	
	hidroquímico modificado de Durov (1948).	242
Figura 112.	Variación espacial de la conductividad eléctrica (CE $\bar{x})$ en los suelos de la	
	laguna los Naranjos.	245
Figura 113.	Variación espacial de la conductividad eléctrica (CE) por espesor analizado	
	de los suelos de la laguna los Naranjos.	247

xxvi

Figura 114. Variación espacial de la conductividad eléctrica (CE x) en los suelos de la laguna la Salina.
Figura 115. Variación espacial de la conductividad eléctrica (CE) por espesor analizado de los suelos de la laguna la Salina.
Figura 116. Tendencia de la altura total y cobertura de copa de la población de mangle negro en relación con la conductividad eléctrica (CE) de los suelos de la laguna los Naranjos.
Figura 117. Tendencia de la altura total y cobertura de copa de la población de mangle negro en relación con la conductividad eléctrica (CE) de los suelos de la laguna los Naranjos.

laguna la Salina.

259