UNIVERSIDAD DEL MAR

Campus Puerto Ángel

"Empleo de agua residual tratada en un sistema hidropónico, enriquecido con cianobacterias encapsuladas del género

Fischerella sp."

TESIS

Que para obtener el título de:

INGENIERO AMBIENTAL

Presenta:

MARIO ALEJANDRO PÉREZ RAMÍREZ

Director de Tesis:

Dr. EUSTACIO RAMÍREZ FUENTES

Ciudad Universitaria, Puerto Ángel, Oaxaca, México, 2017.

RESUMEN

La necesidad de regresar agua con buena calidad dentro del ciclo hidrológico debido a su deterioro por procesos antropogénicos y ambientales ha llevado al tratamiento del agua residual. La capacidad de remoción de nutrientes en solución nutritiva por las plantas y cianobacterias en sistemas hidropónicos ofrece una alternativa como mecanismo biológico de depuración del agua residual tratada. El objetivo del presente trabajo fue evaluar la capacidad de las cianobacterias encapsuladas (Fischerella sp.) de remover fosfato, sulfato, ion potasio, magnesio y calcio en agua residual tratada dentro de un sistema hidropónico y su aporte de nitrato y amonio reflejados en el crecimiento de *Beta vulgaris* L. var. cicla y Spinacia oleracea L. Se establecieron dos tipos de tratamientos para el sistema hidropónico: Agua Residual Tratada (ART) y Agua Residual Tratada con la adición de 4000 perlas de Fischerella sp. Encapsulada (ARTE) cada 2 semanas en un periodo de 2 meses. La S. oleracea L. presentó mortalidad del 100% debido a las altas temperaturas (26.6-31.3°C) y el pH ligeramente alcalino (7.39-8.01), por otra parte, el crecimiento de B. vulgaris L. var. cicla fue interrumpido por la infección de hongos en el sistema hidropónico (DFT) a partir de la semana 5, logró un incremento final de área foliar con respecto a la semana 1 en ART de 113.46 cm² con altura máxima de 13.6 cm y en ARTE se alcanzó una superficie de 95.82 cm² con una altura de 11.7 cm. La remoción final de fosfato y sulfato se incrementó con el uso de Fischerella sp. encapsulada en 17 y 6 % cada nutriente, por el contrario, el ion potasio y magnesio disminuyó su remoción en 20 y 5 % respectivamente. El efecto de la fijación biológica de nitrógeno por la Fischerella sp., fue el incremento en la concentración de nitrato en 9.33 mg/L y la diminución en la remoción de amonio en 3% en comparación con ART. Por otra parte, el efecto del encapsulamiento fue el incremento en la concentración final de 75 mg/L de calcio en el ARTE ocasionado por la desintegración de las perlas de alginato a diferencia de la remoción constante del ART, llegando a la concentración final de 20 mg/L. Se concluye que el uso de Fischerella sp., encapsulada aporta el nitrógeno al agua residual disponible para el crecimiento de Beta vulgaris L. var. cicla e incrementa la remoción de fosfato, sulfato y magnesio, por lo que su implementación es una alternativa como sistema de depuración de agua residual tratada y una técnica de cultivo sustentable.

DEDICATORIA

A mi madre por su amor incondicional.

A mi hermanita por apoyarme siempre.

A sony por acompañarme en todo este proceso.

A mis abuelos, tíos, tías y primos por su ayuda durante estos años.

A toda aquella persona que busque una guía en este trabajo, para ustedes.

AGRADECIMIENTOS

Al Dr. Eustacio Ramírez Fuentes por aceptarme en este proyecto, por su apoyo, paciencia, guía, atención y amabilidad.

A la Dra. Ma. Nieves Trujillo Tapia por invitarme a este proyecto y por su orientación.

Al Dr. Carlos Estrada Vásquez por su orientación durante este proyecto y amabilidad.

A los revisores de la tesis, Dra. Susana García Ortega y M. en C. Cervando Sánchez Muñoz por sus valiosos comentarios para este trabajo.

A los técnicos de laboratorios de ambiental, coral por su gran amabilidad y disponibilidad, esmeralda por su enseñanza y a mi amiga ernestina por su apoyo durante la carrera.

A mi amiga bere por ser mi compañera de desvelos en las tareas, por todas las pláticas, por compartir este proyecto y su apoyo durante la carrera.

A mi amigo celes por acompañarme en los desvelos, por su dosis de humor y buena vibra.

A mis amigos, paco, chivis, blanquita, lupita,.... por haber hecho más amena la estancia en la UMAR.

A mis compañeros de carrera por todas esas experiencias con ustedes.

Al equipo biotecnología, karina, liz, dulce, noe,... por ser un ejemplo de perseverancia.

A sony por su ayuda, consejos, opiniones, sugerencias, y sobre todo por su amor.

ÍNDICE

RE	ESUN	1EN		ii
DI	EDIC.	ATC	ORIA	iii
Α(GRAI	DEC	IMIENTOS	iii
ÍN	DICE	Ξ		iv
ÍN	DICE	E DE	E CUADROS	viii
1.	IN'	TRC	DDUCCIÓN	1
2	MARCO TEÓRICO			3
	2.1	EL	AGUA RESIDUAL	3
	2.2	TR	ATAMIENTO BIOLÓGICO	4
	2.2	2.1	GENERALIDADES	5
	EL		EL TRATAMIENTO BIOLÓGICO DE AGUA RESIDUAL ME JLTIVO DE BACTERIAS, PROTOZOARIOS, HONGOS, MICRO DBACTERIAS Y PLANTAS	OALGAS,
	2.2	2.3	HIDROPONIA	12
	2.3 NUT		OS NUTRIENTES EN AGUA RESIDUAL TRATADA Y SOLUCIÓN	
3	AN	TE	CEDENTES	23
	3.1 HIDF		MPLEO DE AGUA RESIDUAL TRATADA EN UN SISTEMA ÓNICO	23
	3.2 HIDF		O DE CIANOBACTERIAS ENCAPSULADAS EN SISTEMAS ÓNICOS	25
	3.3	US	SO DE CIANOBACTERIAS EN AGUA RESIDUAL TRATADA	26
4	JU	STII	FICACIÓN	28
5	HI	PÓT	ESIS	29
6	OE	BJET	TIVO GENERAL	30
	6.1	OB	BJETIVOS ESPECÍFICOS	30
7	M	ATE	RIALES Y MÉTODOS	31
	7.1	CA	ARACTERIZACIÓN DEL AGUA RESIDUAL TRATADA	33
	7.2	GE	ERMINACIÓN Y TRASPLANTE DE ESPINACA Y ACELGA	37
	7.3	ES	TABLECIMIENTO DEL SISTEMA HIDROPÓNICO	38

		CONDICIONAMIENTO DEL SISTEMA HIDROPÓNICO Y ACTIVORATORIO E INVERNADERO	
	7.4.1	ENCAPSULADO Y CULTIVO DE Fischerella sp	41
	7.4.2	SOLUCIÓN AMORTIGUADORA PARA SISTEMAS HIDROPÓ	
	7.4.3	DETERMINACIÓN DE NUTRIENTES POR ANÁLISIS	QUÍMICO
	FOTO	MÉTRICO	43
	7.4.4	DETERMINACIÓN DE AMONIO	44
	7.4.5	DETERMINACIÓN DE NITRATO	46
	7.5 Al	NÁLISIS ESTADÍSTICO	46
8	RESU	LTADOS Y DISCUSIÓN	48
	8.1 C	ARACTERIZACIÓN DEL AGUA RESIDUAL TRATADA	48
	8.2 PA	ARAMETROS EN EL AGUA RESIDUAL TRATADA	50
	8.3 N	UTRIENTES EN EL AGUA RESIDUAL TRATADA	56
	8.3.1	COMPUESTOS DE NITROGENO EN ART Y ARTE	59
	8.3.2	FOSFATO EN ART Y ARTE	63
	8.3.3	SULFATO EN ART Y ARTE	64
	8.3.4	ION POTASIO EN ART Y ARTE	66
	8.3.5	CALCIO Y MAGNESIO EN ART Y ARTE	67
8.4 REQUERIMENTOS NUTRICIONALES DE ESPINACA Y ACELGA P. CRECIMIENTO			
	8.4.1	ÁREA FOLIAR EN ACELGA.	72
	8.4.2	ALTURA EN ACELGA	73
9	CONC	CLUSIONES	74
1() RECO	MENDACIONES	75
11	1 REFE	RENCIA BIBLIOGRÁFICA	76

ÍNDICE DE FIGURAS

Figura 1 Fischerella sp.	9
Figura 2 Técnica de flujo profundo	13
Figura 3 Invernadero de la UMAR campus Puerto Ángel a) espinacas b) acelgas	15
Figura 4 Esquema de trabajo.	32
Figura 5 Curva de calibración a) Zn b) Cd y c) Cu	36
Figura 6 Fases hasta el trasplante	38
Figura 7 Acondicionamiento del sistema hidropónico	40
Figura 8 Encapsulado de Fischerella sp. y su cultivo	42
Figura 9 Curva de calibración amonio	45
Figura 10 Mortalidad en espinaca	51
Figura 11 Parámetros registrados, pH y Temperatura en ART y ARTE	52
Figura 12 CE en ART y ARTE	53
Figura 13 Estado de salud en acelga	53
Figura 14 Concentración de amonio y nitrato en ART y ART	59
Figura 15 Fosfato en ART y ARTE	64
Figura 16 Sulfato en ART y ARTE	64
Figura 17 Potasio en ART y ARTE	66
Figura 18 Concentración calcio y magnesio en ART y ARTE	68
Figura 19 Crecimiento de altura y área folia en acelga en ART y ARTE	71

ÍNDICE DE CUADROS

Cuadro	1 Degradación biológica de constituyentes orgánicos en agua residual	17
Cuadro	2 Concentraciones de compuestos inorgánicos en el agua residual	19
Cuadro	3 Concentración de nutrientes en agua residual tratada	20
Cuadro	4 Soluciones nutritivas propuestas por diversos autores	21
Cuadro	5 Formulación de solución nutritiva para acelga y espinaca	22
Cuadro	6 Caracterización del agua residual en los cultivos hidropónicos	24
Cuadro	7 Concentraciones para curva de calibración Zn, Cd y Cu	37
Cuadro	8 Concentraciones para la elaboración de la curva de calibración de amonio	45
Cuadro	9 Caracterización del agua residual tratada	48
Cuadro	10 Concentraciones de nutrientes en ART y ARTE	56
Cuadro	11 Requerimientos nutricional de hortalizas y nutrientes en ART y ARTE	69