Universidad del Mar

Campus Puerto Ángel

Degradación electroquímica de ciprofloxacino en un reactor de flujo tipo filtro prensa FM01-LC equipado con electrodos de Diamante Dopado con Boro (DDB)

TESIS

Que como parte de los requisitos para obtener el título de

Ingeniero Ambiental

Presenta:

Alexis Antonio Chimeo Sánchez

Director:

Dr. Ever Peralta Reyes

Puerto Ángel, Oaxaca, 2022

Resumen

En este trabajo se estudió la degradación de ciprofloxacino (CIP) en un reactor electroquímico de flujo tipo filtro prensa FM01-LC equipado con electrodos de diamante dopado con boro (DDB). Un análisis REDOX fue llevado a cabo mediante la técnica de voltamperometría cíclica (VC), demostrando que la reacción se da por oxidación y que la oxidación del CIP es irreversible, lo que garantiza la efectividad del proceso de electrodegradación. También, la optimización paramétrica de la degradación de CIP fue conducida por el método de superficie de respuesta (MSR) con tres factores; intensidad de corriente (i), pH inicial de la solución (pH₀) y concentración inicial de contaminante ($[C]_0$). Donde los intervalos de operación de cada factor fueron: 3 - 4 A para la i, 4.5 - 8.5 para el pH_0 y 10 - 50 mg/L para la [C]₀. Adicionalmente, los parámetros óptimos de la degradación de CIP fueron determinados con ayuda del software Design – Expert ® versión 10, partiendo de un diseño central compuesto en sus caras (DCCC). La influencia de cada uno de los factores de la degradación de CIP, las interacciones sobre la eficiencia de degradación (η (%)) y el costo de operación (CO) se determinó mediante un análisis de varianza (ANOVA). Dentro de los principales resultados se encuentran las condiciones óptimas de operación, las cuales son $[C]_0 = 33.262 \text{ mg/L}$, $pH_0 = 8.49$, i = 3 A; con un flujo de 1 L/min y 0.15 M de sulfato de sodio como electrolito soporte, durante 5 h de tratamiento. Empleando estas condiciones óptimas se alcanzó el 93.7% de degradación de CIP en el reactor electroquímico de flujo. El proceso electroquímico aplicado en este trabajo tuvo un CO de \$0.664 MXN, alcanzó 79.9% de mineralización de TOC con una eficiencia de consumo de energía de 5 kWh/gTOC.

Dedicatoria

Todo esfuerzo tiene su recompensa...

A mi madre, que gracias a ella he podido completar mis estudios y tener una carrera universitaria, esta meta alcanzada te la dedico con todo mi corazón.

A mí, pues con esto confirmamos que somos capaces de superar obstáculos y cumplir objetivos.

Agradecimientos

Mira tu pasado para que nunca olvides de dónde vienes, sin perder de vista el futuro... Quiero agradecer profundamente a mis hermanos Abril y Ángel, porque siempre me han apoyado incondicionalmente.

Para merecer como Rey, hay que trabajar como güey...

Agradezco también a mi madre y abuela, Sebastianas, ya que han sido un pilar muy importante en mi vida, y a toda mi familia que me han aportado un pedacito de ellos: mamá Pancha, Amabeth, las amo y siempre las tengo presentes, Jhoana, Lizz, Betza, Kike, Rodolfo, primos de sangre y familia por decisión, los quiero.

"Siempre" es una palabra corta...

Gracias le doy a mis amigos Coral, Dulce, Ana, Lizz, Inés, Alma, Magda y Beto, porque han estado para mí en momentos de felicidad, de tristeza y de metas cumplidas. Quiñones y Valentín, gracias por darme su amistad y apoyo.

Al buen paso, darle prisa...

Mil gracias a mi director de tesis, Dr. Ever, por haberme aceptado como tesista y aguantarme cada día hasta hoy.

El que puede más, puede menos...

Agradezco también a Benoit, René, Nely, Mónica, Lupita, Adriana, Leo y Ángel (y todas las personas que he conocido en CN) que han formado parte de ésta pequeña pero muy importante etapa de mi vida. Fernando, gracias por abrirme las puertas de tu corazón.

No puedo olvidarme de agradecer a Juan, Copy y toda su familia, mamá Chefi, mamá Yaya y mamá Chuy, por haberme dado palabras de aliento, risas y momentos felices.

Así en la tierra como en el Mar... La ciencia no se detiene

Gracias a la secretaria Irene, a Coral, al jefe de carrera y a todos mis profesores de la Universidad, cada uno se guarda un espacio en mi memoria.

Primero yo, después yo y a lo último yo...

¿Qué sería de esta Tesis sin la ayuda de los revisores? Dr. Alejandro Regalado, Dr. Edson Robles, Dr. Carlos Estrada y Dr. Carlos Escudero gracias por guiarme en el camino hacia la titulación, un logro importante en mi vida, Gracias!!!

Quien no está dispuesto a sacrificar, no logrará ningún cambio...

Por último, Gracias Chimeo, gracias a mí mismo, por demostrarnos que con esfuerzo y dedicación podemos lograr las metas que nos propongamos. Sigue así y volaremos alto.

Índice de contenido

Índice de figuras	viii
Índice de tablas	X
CAPÍTULO I	1
1.1. Introducción	1
1.2. Marco teórico	4
1.2.1. Antibióticos y contaminantes emergentes (CE)	4
1.2.2. Fluoroquinolonas (FQs)	7
1.2.3. Ciprofloxacino (CIP)	9
1.2.4. Procesos de oxidación avanzada (POAs)	11
1.2.5. Procesos electroquímicos de oxidación avanzada (PEOAs)	13
1.2.6. Electroquímica	
1.2.7. Celda electroquímica	
1.2.8. Electrolitos	
1.2.9. Electrolitos soporte	
1.2.10. Electrodos y ánodos	
1.2.11. Electrodos de diamante dopado con boro (DDB)	
1.2.12. Geometria de electrodos	
1.2.13. Reactores químicos	
1.2.14. Reactor electroquímico tipo filtro prensa FM01-LC	
1.2.15. Metodo de superfície de respuesta (MSK)	
1.2.10. Analisis de varianza (ANOVA)	
CAPÍTULO II	
2.1. Antecedentes	
2.2. Justificación	49
CAPÍTULO III	51
3.1. Hipótesis	51
3.2. Objetivos	51
CAPÍTULO IV	52
4.1. Reactivos y soluciones	52
4.2. Materiales y equipos	52
4.3. Desarrollo experimental	54
4.3.1. Voltamperometría cíclica (VC)	

4.3. 4.3.	.2. Di .3. D	iseño experimental por método de superficie de respuesta (MSR) egradación electroquímica de ciprofloxacino (CIP)	57 60
CAPÍT	ULO) V	66
<i>5.1</i> .	Res	ultados y discusiones	66
5.1	.1.	Determinación del tipo de reacción	66
5.1	.2.	Degradación de ciprofloxacino (CIP)	67
5.1	.3.	Optimización de las variables de operación de la degradación	de
cip	roflo	xacino (CIP)	79
5.1	.4.	Validación del modelo	84
5.1	.5.	Orden de reacción	85
5.2.	Con	nparación con otros procesos	90
5.3.	Con	ıclusión	92
REFER	REN(CIAS	94
Apéndi	ce: P	roductos obtenidos 1	.05

Índice de figuras

Figura 1. Clasificación de antibióticos según su estructura química (Mojica & Aga,
2011)
Figura 2. Estructura química de la flumequina7
Figura 3. Estructura química de ciprofloxacino
Figura 4. Distribución de las especies de ciprofloxacino en función del pH (Roca Jalil
et al., 2015) 10
Figura 5. Oxidación directa e indirecta (Anglada et al., 2009)
Figura 6. Celda electroquímica tipo electrolítica y tipo galvánica (Baeza Reyes &
García Mendoza, 2011) 20
Figura 7. Configuración de electrodos (René & Neil, 2013)
Figura 8. Tipos de reactores químicos (René & Neil, 2013) 29
Figura 9. Reactor electroquímico de flujo tipo FM01-LC (Catañeda et al., 2019) 30
Figura 10. Voltamperograma cíclico de una electro-oxidación (Heras Vidaurre et al.,
2017)
Figura 11. Sistema de voltamperometría cíclica57
Figura 12. Sistema de tratamiento electroquímico de ciprofloxacino
Figura 13. Ensamblaje del reactor electroquímico FM01-LC (Regalado-Méndez et al.,
2018)
Figura 14. Estructura general de un espectrofotómetro ultravioleta-visible
(Maldonado Cubas et al., 2018)64
Figura 15. Voltamperograma de ciprofloxacino ([C] ₀ = 30 mg/L con 0.15 M de Na ₂ SO ₄
y 0.05 V/s
Figura 16. Valores predichos por el modelo vs valores experimentales en la eficiencia
de degradación (η (%)) de ciprofloxacino72
Figura 17. Cubo en la eficiencia de degradación (η (%)) de ciprofloxacino
Figura 18. Curva de perturbación para la eficiencia de degradación (η (%)) de
ciprofloxacino74
Figura 19. Valores predichos por el modelo vs valores experimentales en el costo de
operación (CO) de la degradación de ciprofloxacino
Figura 20. Cubo del costo de operación (CO) de la degradación de ciprofloxacino. 78
Figura 21. Curva de perturbación en el costo de operación (CO) de la degradación de
ciprofloxacino
Figura 22. Influencia del pH ₀ y la i en la eficiencia de degradación (η (%)) de
ciprofloxacino a) superficie de respuesta b) gráfica de contorno)
Figura 23. Influencia del pH ₀ y la i en el costo de operación (CO) de la degradación
de CIP a) superficie de respuesta b) gráfica de contorno)
Figura 24. Rampas de las condiciones óptimas de operación

Figura 25. Curva de perturbación en el costo de operación (CO) de la degradación de
ciprofloxacino a las condiciones óptimas82
Figura 26. Deseabilidad individual y conjunta de la degradación de ciprofloxacino a
las condiciones óptimas
Figura 27. Región óptima de operación para la degradación de ciprofloxacino 83
Figura 28. Perfil de degradación de ciprofloxacino de acuerdo al análisis ultravioleta.
Figura 29. Orden de reacción de la degradación de ciprofloxacino de acuerdo al
análisis ultravioleta
Figura 30. Perfil de degradación de ciprofloxacino de acuerdo con el análisis de carbono orgánico total
Figura 31. Orden de reacción de la degradación de ciprofloxacino de acuerdo con el
análisis de carbono orgánico total
Figura 32. Comportamiento del pH de la degradación de ciprofloxacino 89

Índice de tablas

Tabla 1. Clasificación de antibióticos según su estructura química (Mojica & Aga,
2011)
Tabla 2. Generación y clase de quinolona (Oliphant & Green, 2002)
Tabla 3. Estado de las fluoroquinolonas utilizadas para tratar infecciones
(Machado-Duque et al., 2020)
Tabla 4. Potencial estándar de reducción de agentes oxidantes empleados para la
remoción de compuestos orgánicos en medio acuoso.
Tabla 5. Constante de velocidad (K) de radicales hidroxilo (• 0H) y radicales sulfato
(SO4 –•) frente a compuestos orgánicos (Rodríguez-Peña & Barrera-Díaz,
2020)
Tabla 6. Valores de los factores codificados. 58
Tabla 7. Diseño experimental para el método de superficie de respuesta 59
Tabla 8. Resultados de la eficiencia de degradación (η (%)) y costo de operación
(CO)
Tabla 9. Análisis de varianza para la eficiencia de degradación (η (%)) de
ciprofloxacino
Tabla 10. Análisis de varianza para el costo de operación (CO) de la degradación de
ciprofloxacino
Tabla 11. Restricciones en el proceso de optimización
Tabla 12. Condiciones óptimas de operación, eficiencia de degradación (η %) y
costo de operación (CO) teóricos
Tabla 13. Resultados de la eficiencia de degradación (η (%)) y costo de operación
(CO) a las condiciones óptimas
Tabla 14. Degradación electroquímica de ciprofloxacino a diferentes condiciones de
operación
L