Por favor, use este identificador para citar o enlazar este ítem:
http://coralito.umar.mx:8383/jspui/handle/123456789/1536
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Fortuna-Cervantes, Juan Manuel | - |
dc.contributor.author | Soubervielle-Montalvo, Carlos | - |
dc.contributor.author | Puente-Montejano, Cesar Augusto | - |
dc.contributor.author | Perez-Cham, Oscar Ernesto | - |
dc.contributor.author | Pena-Gallardo, Rafael | - |
dc.date.accessioned | 2024-04-08T16:34:37Z | - |
dc.date.available | 2024-04-08T16:34:37Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 2007-9737 | - |
dc.identifier.uri | http://coralito.umar.mx:8383/jspui/handle/123456789/1536 | - |
dc.description | Open Access | es_MX |
dc.description.abstract | The accuracy obtained in Art Media Classification (AMC) using CNN is lower compared to other image classification problems, where the acceptable accuracy ranges from 90 to 99%. This article presents an analysis of the performance of three different CNNs with transfer learning for AMC, to answer the question of what challenges arise in this application. We proposed the Art Media Dataset (ArtMD) to train three CNNs. ArtMD contains five classes of art: Drawing, Engraving, Iconography, Painting, and Sculpture. The analysis of the results demonstrates that all the tested CNNs exhibit similar behavior. Drawing, Engraving, and Painting had the highest relationship, showing a strong relationship between Drawing and Engraving. We implemented two more experiments, removing first Drawing and then Engraving. The best performance with 86% accuracy was achieved by removing Drawing. Analysis of the confusion matrix of the three experiments for each CNN confirms that Drawing and Painting have the lowest accuracy, showing a strong misclassification with the other classes. This analysis presents the degree of relationship between the three CNN models and details the challenges of AMC. | es_MX |
dc.language.iso | en | es_MX |
dc.publisher | Computación y Sistemas | es_MX |
dc.relation.ispartofseries | Vol. 28, No. 1, 2024; | - |
dc.subject | Art media classification, convolutional neural networks, transfer learning | es_MX |
dc.title | Evaluation of CNN Models with Transfer Learning in Art Media Classification in Terms of Accuracy and Class Relationship | es_MX |
dc.type | Article | es_MX |
Aparece en las colecciones: | Artículos Científicos Campus Puerto Escondido |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Evaluation of CNN Models with Transfer Learning in Art Media.pdf | 10.13053/CyS-28-1-4895 | 594.32 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.